How Well Can Saliency Models Predict Fixation Selection in Scenes Beyond Central Bias? A New Approach to Model Evaluation Using Generalized Linear Mixed Models
نویسندگان
چکیده
Since the turn of the millennium, a large number of computational models of visual salience have been put forward. How best to evaluate a given model's ability to predict where human observers fixate in images of real-world scenes remains an open research question. Assessing the role of spatial biases is a challenging issue; this is particularly true when we consider the tendency for high-salience items to appear in the image center, combined with a tendency to look straight ahead ("central bias"). This problem is further exacerbated in the context of model comparisons, because some-but not all-models implicitly or explicitly incorporate a center preference to improve performance. To address this and other issues, we propose to combine a-priori parcellation of scenes with generalized linear mixed models (GLMM), building upon previous work. With this method, we can explicitly model the central bias of fixation by including a central-bias predictor in the GLMM. A second predictor captures how well the saliency model predicts human fixations, above and beyond the central bias. By-subject and by-item random effects account for individual differences and differences across scene items, respectively. Moreover, we can directly assess whether a given saliency model performs significantly better than others. In this article, we describe the data processing steps required by our analysis approach. In addition, we demonstrate the GLMM analyses by evaluating the performance of different saliency models on a new eye-tracking corpus. To facilitate the application of our method, we make the open-source Python toolbox "GridFix" available.
منابع مشابه
A new approach to modeling the influence of image features on fixation selection in scenes
Which image characteristics predict where people fixate when memorizing natural images? To answer this question, we introduce a new analysis approach that combines a novel scene-patch analysis with generalized linear mixed models (GLMMs). Our method allows for (1) directly describing the relationship between continuous feature value and fixation probability, and (2) assessing each feature's uni...
متن کاملWhat can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition.
Saliency map models account for a small but significant amount of the variance in where people fixate, but evaluating these models with natural stimuli has led to mixed results. In the present study, the eye movements of participants were recorded while they viewed color photographs of natural scenes in preparation for a memory test (encoding) and when recognizing them later. These eye movement...
متن کاملA Benchmark of Computational Models of Saliency to Predict Human Fixations
Many computational models of visual attention have been created from a wide variety of different approaches to predict where people look in images. Each model is usually introduced by demonstrating performances on new images, and it is hard to make immediate comparisons between models. To alleviate this problem, we propose a benchmark data set containing 300 natural images with eye tracking dat...
متن کاملGaze distribution analysis and saliency prediction across age groups
Knowledge of the human visual system helps to develop better computational models of visual attention. State-of-the-art models have been developed to mimic the visual attention system of young adults that, however, largely ignore the variations that occur with age. In this paper, we investigated how visual scene processing changes with age and we propose an age-adapted framework that helps to d...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017